Freitag, den 16. März 2018 um 06:59 Uhr

Szenario 2050: Lithium und Kobalt könnten knapp werden

Lithium und Kobalt sind wesentliche Bestandteile aktueller Lithium-Ionen-Batterien. Dass die Verfügbarkeit beider Elemente durch die erhöhte Nachfrage zunehmend kritisch werden könnte, zeigt eine aktuelle Analyse von Forschern des vom Karlsruher Institut für Technologie (KIT) gegründeten Helmholtz-Instituts Ulm (HIU). Kobaltfreie Energiespeichermaterialien und Post-Lithium-Technologien, die auf unkritischen Elementen wie Natrium oder Magnesium, aber auch Zink, Kalzium und Aluminium basieren, eröffnen eine Möglichkeit, diesen Ressourcendruck zu verringern und langfristig zu umgehen. Diese Ergebnisse stellen die Forscher in der Zeitschrift Nature Reviews Materials vor.

Lithium und Kobalt sind wesentliche Bestandteile aktueller Lithium-Ionen-Batterien. Dass die Verfügbarkeit beider Elemente durch die erhöhte Nachfrage zunehmend kritisch werden könnte, zeigt eine aktuelle Analyse von Forschern des vom Karlsruher Institut für Technologie (KIT) gegründeten Helmholtz-Instituts Ulm (HIU). Kobaltfreie Energiespeichermaterialien und Post-Lithium-Technologien, die auf unkritischen Elementen wie Natrium oder Magnesium, aber auch Zink, Kalzium und Aluminium basieren, eröffnen eine Möglichkeit, diesen Ressourcendruck zu verringern und langfristig zu umgehen. Diese Ergebnisse stellen die Forscher in der Zeitschrift Nature Reviews Materials vor.

Neben Lithium ist Kobalt in heutigen Lithium-Ionen-Batterien (LIBs) ein wesentlicher Bestandteil der positiven Elektrode und ausschlaggebend für die Energie- und Leistungsdichte sowie Lebensdauer. Allerdings ist die geringe Verfügbarkeit und hohe Toxizität von Kobalt problematisch, wie im Artikel von Dr. Christoph Vaalma et al. beschrieben. „Generell wird die schnell wachsende Marktdurchdringung von LIBs für mobile und stationäre Anwendungen insbesondere bei Lithium und Kobalt zu einer steigenden Rohstoffnachfrage führen“, sagt Professor Stefano Passerini, der die Studie zusammen mit Dr. Daniel Buchholz am Helmholtz Institut Ulm geleitet hat. Anhand einer Szenario-basierten Analyse bis 2050 zeigten die Forscher für verschiedene Anwendungen von Batterien, dass der Preisanstieg und die Knappheit von Kobalt wahrscheinlich auftreten wird, weil die Nachfrage durch Batterien zweimal so hoch sein könnte wie die heute identifizierten Kobaltreserven. Im Gegensatz dazu seien die heute identifizierten Lithiumreserven ausreichend, die Produktion müsse jedoch stark hochskaliert werden (abhängig vom Szenario bis um das Zehnfache), um die zukünftige Nachfrage zu decken. Beide Elementreserven weisen zudem eine starke geografische Konzentration auf und befinden sich in Ländern, welche als politisch weniger stabil eingestuft werden. Dies lasse eine mögliche Verknappung und eine damit verbundene Preissteigerung von LIBs in naher Zukunft befürchten. „Um diese Risiken zu verringern und den Druck auf die Kobalt- und Lithiumreserven zu reduzieren, ist es unerlässlich, die Forschungsaktivitäten auf alternative Batterietechnologien auszuweiten“, so Daniel Buchholz. „Post-Lithium-Systeme sind besonders attraktiv für die Elektromobilität und stationäre Anwendungen. Daher ist es äußerst wichtig und dringend, ihr Potenzial auszuschöpfen und diese innovativen, hochenergetischen Batterien zur Marktreife zu entwickeln", betont Stefano Passerini, stellvertretender Direktor des HIU.

Diese Ergebnisse bestätigte kürzlich auch ein ebenfalls am HIU entwickeltes globales Szenario für Batterieanwendungen im Bereich der Elektromobilität bis zum Jahr 2050. „Dass die zukünftige Verfügbarkeit von Kobalt für die Massenproduktion von Batterien als sehr kritisch einzustufen ist, zeigt sich auch an der Preiserhöhung von mehr als 120 Prozent innerhalb eines Jahres (2016-2017)",- betont der Systemanalytiker Dr. Marcel Weil vom HIU. Die Etablierung einer zirkularen Batterieökonomie mit hoher Recyclingrate würde den Druck auf kritische Materialien sicher abbauen.

Beide Studien unterstreichen die Bedeutung neuer Batterietechnologien, die auf reichlich vorhandenen, günstigen und ungiftigen Elementen basieren und dadurch den Druck auf kritische Ressourcen verringern. Daher haben das KIT und die Universität Ulm gemeinsam den Antrag „Energy Storage beyond Lithium: New storage concepts for a sustainable future“ für einen Exzellenzcluster erarbeitet, welcher die Entwicklung von Natrium-Ionen-, Magnesium-Ionen- und anderen Batterien basierend auf reichlich vorhandenen Materialien verfolgt. Auch das Zentrum für Sonnenenergie- und Wasserstoffforschung Baden-Württemberg (ZSW) und die Justus-Liebig-Universität Gießen sind daran beteiligt.


Den Artikel finden Sie unter:

http://www.kit.edu/kit/pi_2018_027_szenario-2050-lithium-und-kobalt-konnten-knapp-werden.php

Quelle: Karlsruher Institut für Technologie (03/2018)


Publikation
C. Vaalma, D. Buchholz, M. Weil und S. Passerini "A cost and resource analysis of sodium-ion batteries" Nat. Rev. Mater. 3, 18013 (2018): https://www.nature.com/articles/natrevmats201813 (mit Abonnement); http://rdcu.be/IWu1 (Leseversion)

M. Weil, S-. Ziemann, J. Peters "The Issue of Metal Resources in Li-Ion Batteries for Electric vehicles." In: "Behaviour of Lithium-ion Batteries in Electric Vehicles." Amsterdam, Niederlande: Elsevier 2018

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.